
Department of Mechanical Engineering
Indian Institute of Technology Tirupati

Analysis of GAN and its variants
Aakash

Department of Electrical Engineering
Indian Institute of Technology Tirupati

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Generative models

Real data Fake data

Task at hand: generate new (fake) samples when training data is given

We need to find model density similar to given data density. This can be done in two ways
● Explicit density estimation: explicitly define and solve for p

model
(x)

● Implicit density estimation: learn model that can sample from p
model

(x) without explicitly
defining it

Modified - CS231n Stanford

Generative models

Ian Goodfellow (2016)

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

GAN: Adversarial Net Framework

Ian Goodfellow, NIPS 2016

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Two player minimax game between generator (G) and discriminator (D)

● (D) tries to maximize the log-likelihood for the binary classification problem
○ data: real (1)
○ generated: fake (0)

● (G) tries to minimize the log-probability of its samples being classified as
“fake” by the discriminator (D)

GAN: Generative Adversarial Networks

Goodfellow et al, 2014
Deep Supervised Learning, Spring 2020, Pieter Abbeel

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Training

GAN: Generative Adversarial Networks

CS231n Stanford

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Training

GAN: Generative Adversarial Networks

CS231n Stanford

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

GAN: Bayes-Optimal Discriminator

Goodfellow et al, 2014
Deep Supervised Learning, Spring 2020, Pieter Abbeel

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

GAN: Bayes-Optimal Discriminator

Goodfellow et al, 2014

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

GAN: Generator Objective under D*

Goodfellow et al, 2014
Deep Supervised Learning, Spring 2020, Pieter Abbeel

GAN: Pseudocode

Goodfellow et al (2014)

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

MNIST
● The MNIST database consists of handwritten digits.
● The training set has 60,000 examples, and the test set

has 10,000 examples.
● The MNIST dataset is a subset of NIST dataset. The digits

have been normalized and centered.

Datasets: MNIST and Custom faces

Custom face dataset
● The dataset consists of people’s faces.
● It consists of 683 unlabeled face images of 5 persons

(about 135 face images per person).
● The dataset has been created by running face detection

on photos and center cropping them.
● The images are resized to 256x256 resolution.

→ Image blurred for security purposes.

GAN: Experiments and Results
Discriminator
(0): Linear(in_features=784, out_features=256, bias=True)
(1): LeakyReLU(negative_slope=0.2)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): LeakyReLU(negative_slope=0.2)
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid()
Generator
(0): Linear(in_features=64, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=784, bias=True)
(5): Tanh()

MMD 1 NN Accuracy 1 NN Accuracy
(real)

1 NN Accuracy
(fake)

GAN 0.1964±0.0064 0.6835±0.0122 0.5346±0.0129 0.8324±0.0176

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

GAN: Experiments and Results

Epoch 1 Epoch 200Epoch 100 Epoch 150Epoch 50

WGAN: Wasserstein GAN
● Uses Wasserstein or Earth Mover’s Distance instead of using JS Divergence

○ Smoother representation of distance between two distributions
located in low dimensional manifolds

● Proposed Kantorovich-Rubinstein duality as dual of Wasserstein distance
● Maintains K-Lipschitz continuity using weight clipping: Slow convergence!!

Arjovsky et al (2017)

WGAN: Experiments and Results
Discriminator
(0): Linear(in_features=784, out_features=256, bias=True)
(1): LeakyReLU(negative_slope=0.2)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): LeakyReLU(negative_slope=0.2)
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid()
Generator
(0): Linear(in_features=64, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=784, bias=True)
(5): Tanh()

MMD 1 NN Accuracy 1 NN Accuracy
(real)

1 NN Accuracy
(fake)

WGAN 0.1079±0.0016 0.6788±0.0019 0.5409±0.0198 0.8167±0.0209

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

WGAN: Experiments and Results

Epoch 1 Epoch 200Epoch 100 Epoch 150Epoch 50

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Generator

 (0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)

 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (2): ReLU(inplace=True)

 (3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (5): ReLU(inplace=True)

 (6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (8): ReLU(inplace=True)

 (9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (11): ReLU(inplace=True)

 (12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (13): Tanh()

DCGAN: Experiments and Results
Discriminator

 (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (1): LeakyReLU(negative_slope=0.2, inplace=True)

 (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (4): LeakyReLU(negative_slope=0.2, inplace=True)

 (5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (7): LeakyReLU(negative_slope=0.2, inplace=True)

 (8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

 (9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

 (10): LeakyReLU(negative_slope=0.2, inplace=True)

 (11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)

 (12): Sigmoid()

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

DCGAN: Experiments and Results

Epoch 1 Epoch 200Epoch 100 Epoch 150Epoch 50

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

DCGAN: Experiments and Results

Epoch 1 Epoch 200Epoch 100 Epoch 150Epoch 50

The network seems to have learned the spatial placement of facial features!

‘Bindi’ Moustache

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

● GANs can generate realistic looking images by using two player
non-cooperative minimax game. It has many applications such as Image super
resolution, Image to Image translation (pix-to-pix), Next video frame prediction.

● Training GANs is very difficult: mode collapse, hard to achieve Nash
equilibrium, vanishing gradient problem, lack of proper evaluation metric.

● Latent inference (sampling) is inherently not possible for original GANs.
● WGAN attempts to stabilise the GAN training but weight clipping still causes

instabilities.
● Gradient penalty was introduced in WGANs to further stabilise the training

Conclusions

Code release: https://github.com/nimRobotics/GANs (will be made public by 12 noon, May 11)

https://github.com/nimRobotics/GANs

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

● Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural
information processing systems. 2014.

● Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan."
arXiv preprint arXiv:1701.07875 (2017).

● Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised
representation learning with deep convolutional generative adversarial
networks." arXiv preprint arXiv:1511.06434 (2015).

● Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson
Yan, Deep Unsupervised Learning (Spring 2020), UC Berkeley

● Fei-Fei Li CS231n Lecture slides, Stanford University
● Paszke, Adam, et al. "PyTorch: An imperative style, high-performance

deep learning library." Advances in Neural Information Processing
Systems. 2019.

References

Aakash (@nimrobotics)
Department of Electrical Engineering
Department of Mechanical Engineering

Thank You!

