i Department of Mechanical Engineering
1 1 . .
'" ' I'Ii II ol Indian Institute of Technology Tirupati

TIRUPATI

Analysis of GAN and its variants

Aakash

Department of Electrical Engineering
Indian Institute of Technology Tirupati

VR Hrenfiest dwer fowafa

Generative models TIT

TIRUPATI

Task at hand: generate new (fake) samples when training data is given

Real data Fake data

airplane automobile bird deer

- u
dog orse ship truc

Training data ~ pdata(x) Generated samples ~ p

We need to find model density similar to given data density. This can be done in two ways
e Explicit density estimation: explicitly define and solve for p del(X)
e Implicit density estimation: learn model that can sample from pmodel(x) without explicitly
defining it

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering

Generative models I I fi

TIRUPATI

:

Maximum Likelihood

/ \ / GAN

’EXpliCit density Implicit density
Tractable density‘ ’ Approximate density »Markov Cham,

s - GSN
-Fully visible belief nets
"NADE =

_MADE Variational |Markov Chain

Direct

-Pixe]RNN Varhtional autoencodér Boltzmann machine
-Change of variables
models (nonlinear ICA)

VR Hrenfiest dwer fowafa

GAN: Adversarial Net Framework LI

TIRUPATI
D(x) tries to be
near 1
Differentiable
function D
i sampled from
data

D tries to make
D(G(z)) near 0,
G tries to make

D(G(z)) near 1

ik s*unpled from
model

Differentiable
function G

t

Input noise z

& 4 /\/\/\

Department of Electrical Engineering Aakash (@nimrobotics)
akas nimrobotics

Department of Mechanical Engineering

GAN: Generative Adversarial Networks K

TIRUPATI

ngn max V(D,G) = Epp(a)log D(x)] + E, .,y (2)[log(1 — D(G(2)))]

Two player minimax game between generator (G) and discriminator (D)

e (D) tries to maximize the log-likelihood for the binary classification problem
o data: real (1)
o generated: fake (0)
e (Q) tries to minimize the log-probability of its samples being classified as
“fake” by the discriminator (D)

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

GAN: Generative Adversarial Networks K

TIRUPATI

Training
1. Gradient ascent on discriminator

2% (B0 108 Do, (2) + Exrpy 10g(1 = Doy (G, (2))

2. Gradient descent on generator

rr;in IEsz(z) log(1 — Dy, (Gog (2)))

| /
High gradigantsignal\f\

Cow gradient signal

— log(l1 — D(G(2)))
—_ log D(G(2))

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering

GAN: Generative Adversarial Networks K

TIRUPATI

Training
1. Gradient ascent on discriminator

2% (B0 108 Do, (2) + Exrpy 10g(1 = Doy (G, (2))

2. Gradient descent on generator

rr;in IEsz(z) log(1 — Dy, (Gog (2)))

| /
l High gradignt signal)
l’l’éaX IEzrvp(z) log(Dod(Geg (Z))) 3 |

Cow gradient signal

— log(l1 — D(G(2)))
—_ log D(G(2))

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering

: Bayes-Optimal Discriminator 0 g

TIRUPATI

V(G, D) = Eznpaaea 108 D(2)] + E.np(z) [log(1 — D(G(2)))]

= /pdata(x) 1ogD(x)da:—|—/p(Z) log(1 — D(G(z)))d=

z

= /pdata(x) 1ogD(x)d:U+/pg(:13) log(1 — D(x))dx

= / [Pdata () log D(x) + py(x) log(1l — D(z))] dx

Vylalogy+blog(l—y)]|=0 = y* = aib V [a,b] € R?\[0,0]

pdata(x)

= D) = (pasta(z) + py(x))

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

GAN: Bayes-Optimal Discriminator I
TIRUPATI
Discriminator /Data distribution

D(’E) L pdata(x)

AN = o e

Department of Electrical Engineering Aakash (@nimrobotics)
akas nimrobotics

Department of Mechanical Engineering

GAN: Generator Objective under D’ L

TIRUPATI

V(G, D*) = Exnpgara 108 D*(2)] + Egnyp, [log(1 — D*(z))]
pdata(x) pq(iﬁ)]

ey [l |+,
e [Pdata (%) + Py (@) L Paua(@) + 1y (@)

data + Lia,
= —log(4) + KL (pdatall (pl "5 pg)) L (pg” (pl E m))

-~

(Jensen-Shannon Divergence (JSD) of pgata and pgy) > 0
V(G*,D*) = —log(4) when p; = pdata

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

GAN: Pseudocode i i i

TIRUPATI

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z1), ... z("™)} from noise prior p,(z).
e Sample minibatch of m examples {zV),... (™)} from data generating distribution
pdam(x)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [togD (2) +108 (1- D (6 (=9)))]

=1

end for
e Sample minibatch of m noise samples {z(l) z("‘)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

m

Vgg%;log (1 - D (G (z(i)))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Datasets: MNIST and Custom faces LT

TIRUPATI

MNIST

e The MNIST database consists of handwritten digits.

e The training set has 60,000 examples, and the test set
has 10,000 examples.

e The MNIST dataset is a subset of NIST dataset. The digits
have been normalized and centered.

J-WHrh ONNW W
VY AW oNu39 L
NN P~ IO
VWO NRND QLN ~ %o
YRQPMPRN &N
WL QWO Lrx

Custom face dataset
e The dataset consists of people’s faces.
e [t consists of 683 unlabeled face images of 5 persons
(about 135 face images per person).
e The dataset has been created by running face detection
on photos and center cropping them.
e The images are resized to 256x256 resolution.

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

Ww@fr’mmmw

GAN: Experiments and Results i i i i

TIRUP AT |
Discriminator - T
(0): Linear(in_features=784, out_features=256, bias=True) 08 = ey
(1): LeakyRelLU(negative_slope=0.2)
(2): Linear(in_features=256, out_features=256, bias=True) =
(3): LeakyRelLU(negative_slope=0.2) i
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid() 02
Generator ' ' ' ' ' : ;
(0): Linear(in_features=64, out_features=256, bias=True) Or 200007 ~B00D 0000 0E0: 10000 120000
(1): ReLU() 10 1
(2): Linear(in_features=256, out_features=256, bias=True) -
(3): ReLU() &
(4): Linear(in_features=256, out_features=784, bias=True) a
(5): Tanh() p
i
MMD 1 NN Accuracy 1 NN Accuracy 1 NN Accuracy
(real) (fake) 2]

GAN 0.1964+0.0064 | 0.6835+0.0122 0.5346+0.0129 | 0.8324+0.0176

0 20000 40000 60000 80000 100000 120000
Iterations

fiE=1r
1=
==

iments and Results

:Exper

GAN

AN e moo— N ™~
N ==~ T~
D—m™mremnf O~ o> =~
O=~NoN—~maee~b
T~ esS~af Ny
P ~OrFr%e)—0Q &~ —
/2/7&}n3ﬁ3,6 NT™H)~ O
Nero~FTVEN—gWnm

—_—) = 1 8 od) e O~
e . R A S A2 B NS SN o
7.1/9./6(/07./0.!
~WNS—=0d+rNMNrQ
NN N — ey v Uy N -
e O 0N NN e Y o —
CNNST -~ NT
SV NEXa~O Wel —~

NG Ne it Ne
AN— N R =B
W= &N NS N oy e e
[l el & B 0 ST RN SRS S 5w
TN - N NN M
=~l.l.ﬁ....)!.-l nY.Zl../p
O O (e WS N o
Tl — >R

S R e N e
“m.v(fll «tflva‘.'i'?irwdwv!&
:LSirﬁwﬁfﬁa

wJ J...L jgua@, i g 74.}:.
!Ji/!%;gfiﬁﬁp

,.).s.f..n] 1.4”1./.1...,.

& / VA;“ X 2

bR

~ ...u?,, ;

S N S« e

Epoch 200
Aakash (@nimrobotics)

Epoch 150

Epoch 100

Department of Electrical Engineering
Department of Mechanical Engineering

WGAN: Wasserstein GAN KT

TIRUPATI

e Uses Wasserstein or Earth Mover's Distance instead of using JS Divergence
o Smoother representation of distance between two distributions
located in low dimensional manifolds
W(prvpg) = inf E(x,y)fvv“'x — y”]
7~11(pr,py)
e Proposed Kantorovich-Rubinstein duality as dual of Wasserstein distance
e Maintains K-Lipschitz continuity using weight clipping: Slow convergence!!

Standard GAN
m&n mgx E.~p, [log D(x)] + Ez~p, log(1 — D(2))]
Wasserst\ein GAN

i Eywp. [D(z)] — Ezup, [D(3
min max E,~p, [D(z)] p, [D(Z)]

VR drenfirat R fosufa

WGAN: Experiments and Results LT

TIRUPATI
Discriminator 107 o
(0): Linear(in_features=784, out_features=256, bias=True) 05 | L o ol
(1): LeakyRelLU(negative_slope=0.2) ;
(2): Linear(in_features=256, out_features=256, bias=True) o1 N
(3): LeakyReLU(negative_slope=0.2) oo Mul
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid() 02 {
Generator ' ' ' ; : |
(0): Linear(in_features=64, out_features=256, bias=True) o @ fom 0D G B
(1): ReLU() 00
(2): Linear(in_features=256, out_features=256, bias=True) P =
(3) ReLU() -0.2 A
(4): Linear(in_features=256, out_features=784, bias=True) 031
(5): Tanh() # 04
05 ‘W—* SR
MMD 1 NN Accuracy | 1 NN Accuracy = 1 NN Accuracy 28] l
(real) (fake) —0.7 1 { — Dloss

G loss

WGAN | 0.1079+0.0016 | 0.6788+0.0019 | 0.5409+0.0198 | 0.8167+0.0209 0 5000 10000 15000 20000 25000

Iterations

=1
1=
==

iments and Results |

Exper

WGAN

A AL T T et L T 53RN S

- P I B T v O e
NI N R R
Vo v) e s o BT D
T BV G =2 0
O E NI AN
LAl B VIR T SRR SRt
[ENICI R T .’a& \\Y

DX\
AR S BECOR N
nvgJ ™
~ ' N
I A
]y mo)

LS IEN

e hoe

w, 8§ & o
Ry N
W >~
Y v ar B Q9
IO QY e
AL NPT N
M a g QgirhHidamdwe

Epoch 200

Aakash (@nimrobotics)

Epoch 150

o
o
—
<
8]
o
Q
w

Department of Electrical Engineering
Department of Mechanical Engineering

1
)

DCGAN: Experiments and Results LT

TIRUPATI

Generator

: ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)

: BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
: BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
: BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

(10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)

(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh()

Department of Electrical Engineering

Department of Mechanical Engineering

Discriminator

: Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

9):

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(10): LeakyRelLU(negative_slope=0.2, inplace=True)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
(12): Sigmoid()

Aakash (@nimrobotics)

YRR Hrenfre! e foreufy

I

TIRUPATI

ST A
L3 WD TS S

Epoch 1 Epoch 50 Epoch 100 Epoch 150 Epoch 200

Department of Electrical Engineering Aakash (@nimrobotics)
akas nimrobotics

Department of Mechanical Engineering

AR St weerr foredfd

DCGAN: Experiments and Results X

TIRUPATI

E e e) i ™ E o ’:‘(““j
‘g:\.«i vg N W
¥ R 1
\ e £ F A

, | St & \ v, A
(4 S LA
S
B |

b

AETGE A5
S|
EE 30

Epoch 50

The network seems to have learned the spatial placement of facial features!

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

Conclusions I 0 i fi

TIRUPATI

e GANSs can generate realistic looking images by using two player
non-cooperative minimax game. It has many applications such as Image super
resolution, Image to Image translation (pix-to-pix), Next video frame prediction.

e Training GANSs is very difficult: mode collapse, hard to achieve Nash
equilibrium, vanishing gradient problem, lack of proper evaluation metric.

e Latent inference (sampling = ~ P(z)) is inherently not possible for original GANS.

e WGAN attempts to stabilise the GAN training but weight clipping still causes
instabilities.

e Gradient penalty was introduced in WGANS to further stabilise the training

Code release: (will be made public by 12 noon, May 11)

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering

https://github.com/nimRobotics/GANs

References i i i

TIRUPATI

e Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural
information processing systems. 2014,

e Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan."
arXiv preprint arXiv:1701.07875 (2017).

e Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised
representation learning with deep convolutional generative adversarial
networks." arXiv preprint arXiv:1511.06434 (2015).

e Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson
Yan, Deep Unsupervised Learning (Spring 2020), UC Berkeley

e Fei-Fei Li CS231n Lecture slides, Stanford University

e Paszke, Adam, et al. "PyTorch: An imperative style, high-performance
deep learning library." Advances in Neural Information Processing
Systems. 2019.

Department of Electrical Engineering

Department of Mechanical Engineering Aakash (@nimrobotics)

TIRUPATI

Thank Youl!

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering

