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Task at hand: generate new (fake) samples when training data is given

Real data Fake data

airplane automobile bird deer

- u
dog orse ship truc

Training data ~ pdata(x) Generated samples ~ p

We need to find model density similar to given data density. This can be done in two ways
e Explicit density estimation: explicitly define and solve for p del( X)
e Implicit density estimation: learn model that can sample from pmodel(x) without explicitly
defining it
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ngn max V(D,G) = Epp(a)log D(x)] + E, .,y (2)[log(1 — D(G(2)))]

Two player minimax game between generator (G) and discriminator (D)

e (D) tries to maximize the log-likelihood for the binary classification problem
o data: real (1)
o generated: fake (0)
e (Q) tries to minimize the log-probability of its samples being classified as
“fake” by the discriminator (D)
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Training
1. Gradient ascent on discriminator

2% (B0 108 Do, (2) + Exrpy 10g(1 = Doy (G, (2))

2. Gradient descent on generator

rr;in IEsz(z) log(1 — Dy, (Gog (2)))

| /
High gradigantsignal\f\

Cow gradient signal

— log(l1 — D(G(2)))
—_ log D(G(2))

Department of Electrical Engineering

Aakash (@nimrobotics)

Department of Mechanical Engineering



GAN: Generative Adversarial Networks K

TIRUPATI

Training
1. Gradient ascent on discriminator

2% (B0 108 Do, (2) + Exrpy 10g(1 = Doy (G, (2))

2. Gradient descent on generator

rr;in IEsz(z) log(1 — Dy, (Gog (2)))

| /
l High gradignt signal )
l’l’éaX IEzrvp(z) log(Dod(Geg (Z))) 3 |

Cow gradient signal

— log(l1 — D(G(2)))
—_ log D(G(2))
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V(G, D) = Eznpaaea 108 D(2)] + E.np(z) [log(1 — D(G(2)))]

= /pdata(x) 1ogD(x)da:—|—/p(Z) log(1 — D(G(z)))d=

z

= /pdata(x) 1ogD(x)d:U+/pg(:13) log(1 — D(x))dx

= / [Pdata () log D(x) + py(x) log(1l — D(z))] dx

Vylalogy+blog(l—y)]|=0 = y* = aib V  [a,b] € R?\[0,0]

pdata(x)

= D) = (pasta(z) + py(x))
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Discriminator /Data distribution

D(’E) L pdata(x)

AN = o e
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V(G, D*) = Exnpgara 108 D*(2)] + Egnyp, [log(1 — D*(z))]
pdata(x) pq(iﬁ) ]

ey [l |+,
e [ Pdata (%) + Py (@) L Paua(@) + 1y (@)

data + Lia,
= —log(4) + KL (pdatall (pl "5 pg)) L (pg” (pl E m))

-~

(Jensen-Shannon Divergence (JSD) of pgata and pgy) > 0
V(G*,D*) = —log(4) when p; = pdata
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z1), ... z("™)} from noise prior p,(z).
e Sample minibatch of m examples {zV),... (™)} from data generating distribution
pdam(x)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [togD (2) +108 (1- D (6 (=9)))]

=1

end for
e Sample minibatch of m noise samples {z(l) ..... z("‘)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

m

Vgg%;log (1 - D (G (z(i)))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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MNIST

e The MNIST database consists of handwritten digits.

e The training set has 60,000 examples, and the test set
has 10,000 examples.

e The MNIST dataset is a subset of NIST dataset. The digits
have been normalized and centered.
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Custom face dataset
e The dataset consists of people’s faces.
e [t consists of 683 unlabeled face images of 5 persons
(about 135 face images per person).
e The dataset has been created by running face detection
on photos and center cropping them.
e The images are resized to 256x256 resolution.
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Discriminator - T
(0): Linear(in_features=784, out_features=256, bias=True) 08 = ey
(1): LeakyRelLU(negative_slope=0.2)
(2): Linear(in_features=256, out_features=256, bias=True) =
(3): LeakyRelLU(negative_slope=0.2) i
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid() 02
Generator ' ' ' ' ' : ;
(0): Linear(in_features=64, out_features=256, bias=True) Or 200007 ~B00D 0000 0E0: 10000 120000
(1): ReLU() 10 1
(2): Linear(in_features=256, out_features=256, bias=True) -
(3): ReLU() &
(4): Linear(in_features=256, out_features=784, bias=True) a
(5): Tanh() p
i
MMD 1 NN Accuracy 1 NN Accuracy 1 NN Accuracy
(real) (fake) 2]

GAN 0.1964+0.0064 | 0.6835+0.0122 0.5346+0.0129 | 0.8324+0.0176

0 20000 40000 60000 80000 100000 120000
Iterations
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e Uses Wasserstein or Earth Mover's Distance instead of using JS Divergence
o Smoother representation of distance between two distributions
located in low dimensional manifolds
W(prvpg) = inf E(x,y)fvv“'x — y”]
7~11(pr,py)
e Proposed Kantorovich-Rubinstein duality as dual of Wasserstein distance
e Maintains K-Lipschitz continuity using weight clipping: Slow convergence!!

Standard GAN
m&n mgx E.~p, [log D(x)] + Ez~p, log(1 — D(2))]
Wasserst\ein GAN

i Eywp. [D(z)] — Ezup, [D(3
min max E,~p, [D(z)] p, [D(Z)]
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Discriminator 107 o
(0): Linear(in_features=784, out_features=256, bias=True) 05 | L o ol
(1): LeakyRelLU(negative_slope=0.2) ;
(2): Linear(in_features=256, out_features=256, bias=True) o1 N
(3): LeakyReLU(negative_slope=0.2) oo Mul
(4): Linear(in_features=256, out_features=1, bias=True)
(5): Sigmoid() 02 {
Generator ' ' ' ; : |
(0): Linear(in_features=64, out_features=256, bias=True) o @ fom 0D G B
(1): ReLU() 00
(2): Linear(in_features=256, out_features=256, bias=True) P =
(3) ReLU() -0.2 A
(4): Linear(in_features=256, out_features=784, bias=True) 031
(5): Tanh() # 04
05 ‘W—* SR
MMD 1 NN Accuracy | 1 NN Accuracy = 1 NN Accuracy 28] l
(real) (fake) —0.7 1 { — Dloss

G loss

WGAN | 0.1079+0.0016 | 0.6788+0.0019 | 0.5409+0.0198 | 0.8167+0.0209 0 5000 10000 15000 20000 25000

Iterations
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Generator

: ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)

: BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
: BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
: BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: ReLU(inplace=True)

: ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

(10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)

(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh()
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Discriminator

: Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

: BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
: LeakyReLU(negative_slope=0.2, inplace=True)

: Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

9):

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(10): LeakyRelLU(negative_slope=0.2, inplace=True)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
(12): Sigmoid()
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Epoch 50

The network seems to have learned the spatial placement of facial features!
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e GANSs can generate realistic looking images by using two player
non-cooperative minimax game. It has many applications such as Image super
resolution, Image to Image translation (pix-to-pix), Next video frame prediction.

e Training GANSs is very difficult: mode collapse, hard to achieve Nash
equilibrium, vanishing gradient problem, lack of proper evaluation metric.

e Latent inference (sampling = ~ P(z)) is inherently not possible for original GANS.

e WGAN attempts to stabilise the GAN training but weight clipping still causes
instabilities.

e Gradient penalty was introduced in WGANS to further stabilise the training

Code release: (will be made public by 12 noon, May 11)
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https://github.com/nimRobotics/GANs
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