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Abstract—Trust is a central factor for long-term success of
human-robot collaborations (HRC). Extending our understand-
ing of trust dynamics and transitivity in HRC requires systematic
efforts towards developing novel and continuous metrics to
capture trust and trusting behaviors, which are currently limited
to self-reports. Survey responses provide minimal information
about the changing states of trust and can interfere with the
experiment itself. However, when coupled with neurophysiological
and behavioral measures, i.e., brain imaging, heart rate data, eye-
tracking, and human performances, these multimodal metrics
can provide a more accurate and comprehensive picture of the
human’s cognitive and affective states and behavior. Such bio-
behavioral metrics enable an understanding of human behavior
in HRC at a much granular and more profound level, and draw
in newer perspectives on trust in HRC.

Index Terms—human-robot collaboration, trust in automation,
human-in-the-loop, industrial robots

I. INTRODUCTION

Initially designed to perform repetitive tasks in an indus-
trial setting, robots can now be found almost everywhere
due to the advancements in the field of robotics. This has
led to increased collaboration between humans and robots
[1]. Although robotics has evolved rapidly, the development
of human factors has largely failed to keep up the pace.
A significant amount of research has focused on designing
hardcoded robots and automation behaviors that can work
with an average human; however, these implementations fail to
account for inherent differences between people. Most human
factors literature fails to provide details about the internal
cognitive state of the operator, which is necessary to learn
about trust, cognitive fatigue, and situation awareness [2],
[3]. Where studied, behavioral understanding of the human
component has been mostly driven by the subjective response,
which has several limitations due to its subjective and discrete
nature.

Trust is an important design factor for automation; under-
trust can lead to suboptimal performance and technology
rejection, and over-trust can lead to misuse and accidents [4].
It has been shown that people behave differently and have a
varying amount of trust in robots based on their personality
and personal dispositions [5]. This means that designing a
robot inspired by a general operator behavior will not result
in optimal experience from everyone. Systematic ignorance
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of the granular considerations of trust and its connection to
human behavior has led to a lack of understanding of how
trust influences behavior and predispositions between users.
Hence, there is a need for new measures that quantify trust at
cognitive and behavioral levels to adapt the robot. Utilization
of multimodal and new perspectives (e.g., bio-instrumentation,
neuroergonomics, multiple types of performance metrics, etc.)
can help realize this goal.

II. NEED FOR NEW PERSPECTIVES

The default method of interpersonal and human-robot trust
remains subjective questionnaires and interviews [6]. They
have been the foundation of most past studies investigating
technology acceptance, human-robot interactions, collabora-
tive robot designs, etc. However, the nature of self-reported
subjective measures require disruption or at least distraction
from the ongoing task. Specifically, a trust survey can disrupt
cognitive processes associated with completing the task. While
subjective measures may remain mainstream in future trust
studies, the deployment of objective measures alongside sub-
jective responses can provide a more holistic view of the hu-
man. Correlations between neurophysiological measures, such
as electrocardiography (ECG), electrodermal activity (EDA),
neural activity, and eye-tracking, and human-automation trust
have been drawn in existing empirical studies [7]–[9]. In
addition, behavioral analysis has also been implemented for
trust measurement; with proper coding of the task behaviors,
behavioral differences have been found between different trust
levels [10], [11]. These measures can reveal insights that
subjective responses cannot capture, such as the robot and
human performance bottlenecks and task disengagement.

III. THE BRAIN, HEART, AND EYE’S

Physiological measures such as brain-imaging, EDA, and
eye-tracking can provide unbiased insight into the physio-
logical, neurological, and psychological state and can help
identify trust change. These measures do not disrupt the task at
hand and offer the opportunity to collect data in a continuous
fashion. Brain imaging techniques, such as EEG and functional
near-infrared spectroscopy (fNIRS), are relatively low cost and
portable, allowing for studies in naturalistic settings [12], [13].
Brain imaging can help understand mechanisms that drive
certain behaviors; it can help establish associated relationships
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Fig. 1. HRC with bio-behavioral feedback

between different brain regions and identify engagement or
disengagement of specific regions associated with cognitive
state changes [8]. Eye-tracking can provide cognitive and
behavioral information; more specifically, pupil and gaze
data (e.g., pupil dilation, fixation features, gaze entropy) can
provide information about top-down and bottom-up cognitive
processing, and it is also associated with task engagement
[14]. Analysis of ECG data can reveal information about both
the parasympathetic and sympathetic nervous systems. On the
other hand, EDA can provide insights into the affective system,
and it has often been related to stress and anxiety [15], [16].

IV. DEEP DIVE INTO HUMAN BEHAVIORAL METRICS

In HRC, performances are often optimized at the system
level (e.g., minimizing time to complete a task). However,
delineation of human and robot performances is imperative
to truly understand the interactive effects of human-robot
collaborative systems. For example, a perturbation in robot
performance will directly affect human performance and be-
havior [17]. Utilization of a system performance metric may
reveal the overall consequence of faulty robot behavior, but it
cannot provide context into how or why human performance
is causing an additive decrement. As collaborative robotics
become smarter, robot performances are additionally likely
to adapt to changes in human performance. Thus, delineating
human, robot, and system performances is essential for future
work [6]. In addition to delineation, multiple quantitative (e.g.,
efficiency, accuracy, precision, utilization) and qualitative (e.g.,
slips, mistakes, lapses) human performance metrics should be
considered. These coupled considerations can reveal insights
into the cognitive state driving performance changes. Having
this level of understanding of human behavior would allow
researchers to provide recommendations for robot or envi-
ronmental support to mitigate slips specifically. This more
profound understanding of the human, alongside the use of
neurophysiology and subjective responses, can fill knowledge
gaps on human factors that have been systematically over-
looked in less granular metrics.

V. IMPLICATIONS OF NEW PERSPECTIVES IN HRC
A holistic view of human behavior and performance can

help design better HRC. This knowledge can help us under-
stand why trust connects to how humans behave and interact
with the robot in certain scenarios (under fatigue, reduced
reliability, etc.). This new knowledge of a human’s internal
state can be used to design HRC such that it minimizes
operator workload, fatigue, and increases overall system per-
formance. Further, the collaboration can also be designed to
have preventive measures against injuries by detecting the
cognitive state. For example, it might be better for the robot
to stop the ongoing task if it detects high fatigue and reduced
situation awareness. Multi-modal physiological monitoring
can help pinpoint the exact conditions and causes that lead
to poor performance and help identify the state changes in
humans that they are unable to quantify themselves.

VI. CONCLUSION

Understanding the inner workings of human behavior in
the context of HRC is crucial. People behave inherently
differently from one another, and designing for the same type
of interaction across different people might not be optimal.
Someone with a high propensity to trust in automation might
perform better than another who does not trust automation.
Multi-modal approaches can allow for flexible and fluid col-
laboration, tailored to each individual. Furthermore, even the
behavior of a single individual is ever-evolving, thus requiring
the robot to adapt continuously to accommodate for behavior
changes and to optimize performance throughout (Fig. 1). This
closed-loop control over the robot behavior allows for con-
tinuous adaptation, making the system performance robust to
robot failure and human fatigue. Physiological measurements
allow for data to be obtained in near real-time, and it can
be used to adapt robot behavior in situ without disturbing
the ongoing task in contrast to subjective measure. Even
if adaptation is not the imminent goal, data obtained from
multimodal physiological measurements can help identify the
states that lead to an increase or decrease in performance. This
can improve robot behavior resulting in increased performance
and worker satisfaction.
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